对机器学习模型训练的栅极基量子电路的发展越来越兴趣。然而,关于电路设计的参数,噪声和其他测量误差对量子机器学习模型性能的影响很少。在本文中,我们探讨了使用多个标准机器学习数据集和IBM的Qiskit模拟器的关键电路设计参数(Qubits,Deposit等)的实际意义。总的来,我们评估超过6500个独特电路,以$ n \约120700美元。我们发现,一般浅(低深度)宽(更多Qubits)电路拓扑倾向于在没有噪声的情况下更优于更深的内容。我们还探讨了不同噪声概念的影响和影响,并讨论了对分类机学习任务的噪声更多/较低的电路拓扑。基于该研究结果,我们定义了使用基于门的NISQ量子计算机来实现近期承诺的电路拓扑指南。
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Autonomous robotic surgery has advanced significantly based on analysis of visual and temporal cues in surgical workflow, but relational cues from domain knowledge remain under investigation. Complex relations in surgical annotations can be divided into intra- and inter-relations, both valuable to autonomous systems to comprehend surgical workflows. Intra- and inter-relations describe the relevance of various categories within a particular annotation type and the relevance of different annotation types, respectively. This paper aims to systematically investigate the importance of relational cues in surgery. First, we contribute the RLLS12M dataset, a large-scale collection of robotic left lateral sectionectomy (RLLS), by curating 50 videos of 50 patients operated by 5 surgeons and annotating a hierarchical workflow, which consists of 3 inter- and 6 intra-relations, 6 steps, 15 tasks, and 38 activities represented as the triplet of 11 instruments, 8 actions, and 16 objects, totaling 2,113,510 video frames and 12,681,060 annotation entities. Correspondingly, we propose a multi-relation purification hybrid network (MURPHY), which aptly incorporates novel relation modules to augment the feature representation by purifying relational features using the intra- and inter-relations embodied in annotations. The intra-relation module leverages a R-GCN to implant visual features in different graph relations, which are aggregated using a targeted relation purification with affinity information measuring label consistency and feature similarity. The inter-relation module is motivated by attention mechanisms to regularize the influence of relational features based on the hierarchy of annotation types from the domain knowledge. Extensive experimental results on the curated RLLS dataset confirm the effectiveness of our approach, demonstrating that relations matter in surgical workflow analysis.
translated by 谷歌翻译
Mobile health (mHealth) technologies empower patients to adopt/maintain healthy behaviors in their daily lives, by providing interventions (e.g. push notifications) tailored to the user's needs. In these settings, without intervention, human decision making may be impaired (e.g. valuing near term pleasure over own long term goals). In this work, we formalize this relationship with a framework in which the user optimizes a (potentially impaired) Markov Decision Process (MDP) and the mHealth agent intervenes on the user's MDP parameters. We show that different types of impairments imply different types of optimal intervention. We also provide analytical and empirical explorations of these differences.
translated by 谷歌翻译
Interpretability is a pressing issue for machine learning. Common approaches to interpretable machine learning constrain interactions between features of the input, rendering the effects of those features on a model's output comprehensible but at the expense of model complexity. We approach interpretability from a new angle: constrain the information about the features without restricting the complexity of the model. Borrowing from information theory, we use the Distributed Information Bottleneck to find optimal compressions of each feature that maximally preserve information about the output. The learned information allocation, by feature and by feature value, provides rich opportunities for interpretation, particularly in problems with many features and complex feature interactions. The central object of analysis is not a single trained model, but rather a spectrum of models serving as approximations that leverage variable amounts of information about the inputs. Information is allocated to features by their relevance to the output, thereby solving the problem of feature selection by constructing a learned continuum of feature inclusion-to-exclusion. The optimal compression of each feature -- at every stage of approximation -- allows fine-grained inspection of the distinctions among feature values that are most impactful for prediction. We develop a framework for extracting insight from the spectrum of approximate models and demonstrate its utility on a range of tabular datasets.
translated by 谷歌翻译
Spurious correlations, or correlations that change across domains where a model can be deployed, present significant challenges to real-world applications of machine learning models. However, such correlations are not always "spurious"; often, they provide valuable prior information for a prediction beyond what can be extracted from the input alone. Here, we present a test-time adaptation method that exploits the spurious correlation phenomenon, in contrast to recent approaches that attempt to eliminate spurious correlations through invariance. We consider situations where the prior distribution $p(y, z)$, which models the marginal dependence between the class label $y$ and the nuisance factors $z$, may change across domains, but the generative model for features $p(\mathbf{x}|y, z)$ is constant. We note that this is an expanded version of the label shift assumption, where the labels now also include the nuisance factors $z$. Based on this observation, we train a classifier to predict $p(y, z|\mathbf{x})$ on the source distribution, and implement a test-time label shift correction that adapts to changes in the marginal distribution $p(y, z)$ using unlabeled samples from the target domain. We call our method "Test-Time Label-Shift Adaptation" or TTLSA. We apply our method to two different image datasets -- the CheXpert chest X-ray dataset and the colored MNIST dataset -- and show that it gives better downstream results than methods that try to train classifiers which are invariant to the changes in prior distribution. Code reproducing experiments is available at https://github.com/nalzok/test-time-label-shift .
translated by 谷歌翻译
In this technical note, we introduce an improved variant of nearest neighbors for counterfactual inference in panel data settings where multiple units are assigned multiple treatments over multiple time points, each sampled with constant probabilities. We call this estimator a doubly robust nearest neighbor estimator and provide a high probability non-asymptotic error bound for the mean parameter corresponding to each unit at each time. Our guarantee shows that the doubly robust estimator provides a (near-)quadratic improvement in the error compared to nearest neighbor estimators analyzed in prior work for these settings.
translated by 谷歌翻译
Human activity recognition (HAR) using IMU sensors, namely accelerometer and gyroscope, has several applications in smart homes, healthcare and human-machine interface systems. In practice, the IMU-based HAR system is expected to encounter variations in measurement due to sensor degradation, alien environment or sensor noise and will be subjected to unknown activities. In view of practical deployment of the solution, analysis of statistical confidence over the activity class score are important metrics. In this paper, we therefore propose XAI-BayesHAR, an integrated Bayesian framework, that improves the overall activity classification accuracy of IMU-based HAR solutions by recursively tracking the feature embedding vector and its associated uncertainty via Kalman filter. Additionally, XAI-BayesHAR acts as an out of data distribution (OOD) detector using the predictive uncertainty which help to evaluate and detect alien input data distribution. Furthermore, Shapley value-based performance of the proposed framework is also evaluated to understand the importance of the feature embedding vector and accordingly used for model compression
translated by 谷歌翻译
远程患者监测(RPM)系统的最新进展可以识别各种人类活动,以测量生命体征,包括浅表血管的细微运动。通过解决已知的局限性和挑战(例如预测和分类生命体征和身体运动),将人工智能(AI)应用于该领域的医疗保健领域越来越兴趣,这些局限性和挑战被认为是至关重要的任务。联合学习是一种相对较新的AI技术,旨在通过分散传统的机器学习建模来增强数据隐私。但是,传统的联合学习需要在本地客户和全球服务器上培训相同的建筑模型。由于缺乏本地模型异质性,这限制了全球模型体系结构。为了克服这一点,在本研究中提出了一个新颖的联邦学习体系结构Fedstack,该体系支持结合异构建筑客户端模型。这项工作提供了一个受保护的隐私系统,用于以分散的方法住院的住院患者,并确定最佳传感器位置。提出的体系结构被应用于从10个不同主题的移动健康传感器基准数据集中,以对12个常规活动进行分类。对单个主题数据培训了三个AI模型ANN,CNN和BISTM。联合学习体系结构应用于这些模型,以建立能够表演状态表演的本地和全球模型。本地CNN模型在每个主题数据上都优于ANN和BI-LSTM模型。与同质堆叠相比,我们提出的工作表明,当地模型的异质堆叠表现出更好的性能。这项工作为建立增强的RPM系统奠定了基础,该系统纳入了客户隐私,以帮助对急性心理健康设施中患者进行临床观察,并最终有助于防止意外死亡。
translated by 谷歌翻译
在纠缠和连贯性等计量学中利用量子效应使人们可以测量具有增强灵敏度的参数。但是,时间依赖性的噪声会破坏这种海森堡限制的扩增。我们提出了一种基于量子信号处理框架,以克服这些现实的噪声诱导的实践量子计量学限制。我们的算法将门参数$ \ varphi $〜(单量Z阶段)分开,该算法易受时间依赖性错误与目标门参数$ \ theta $〜(| 10>和| 01> state之间的交换 - 角)易受时间依赖时间的错误。这在很大程度上没有时间依赖性误差。我们的方法实现了$ 10^{ - 4} $径向的准确性,用于学习超导级实验的$ \ theta $,以优于两个数量级的现有替代方案。我们还通过快速的傅立叶变换和顺序相位差异证明了学习时间依赖性栅极参数的鲁棒性。我们从理论和数字上均显示出最佳计量方差缩放的有趣过渡,这是电路深度$ d $的函数,从预抗态度制度$ d \ ll 1/\ theta $ to to Heisenberg限制$ d \ to \ to \ $ $。值得注意的是,在临时策略中,我们的方法对时间敏感参数$ \ varphi $比例的估计差异比渐近的海森伯格限制快速限制为深度的函数,$ \ text {var}(\ hat {\ varphi})\ aid 1/d^4 $。我们的工作是第一个证明在实验室量子计算机中实用应用的量子信号处理算法。
translated by 谷歌翻译